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Cluster Size Distribution at Criticality 
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Monte Carlo studies of the cluster size distribution for the site percolation 
problem on the triangular lattice are extended to lattices with up to 4 x l 0  l l  

sites. Agreement with the predictions of scaling theory at Pc is excellent over a 
range of cluster sizes spanning five orders of magnitude. 
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The percolation problem (1) is one of the most concisely formulated lattice 
statistical models that continues to defy analytical solution; it has, 
however, proved to be an apparently willing candidate for numerical study. 
A variety of methods, including Monte Carlo simulation (2'3) and exact 
series analysis, (4) have been used to elucidate many of the most interesting 
properties of this model, and seemingly disparate results have been con- 
solidated within the framework of scaling theory. (1) 

In this brief communication we describe an extension of an earlier 
study (3) of the distribution of cluster sizes on the two-dimensional 
triangular lattice to systems whose size (i.e,, area) is larger by a factor of 16. 
The aim of this work is to establish the degree to which the essentially 
phenomenological scaling theory is capable of describing the behavior of 
the model. 

When the site occupation probabili ty is at the critical value Pc 
(Pc = 0.5 for the triangular lattice), the prediction of scaling theory (1) is that 
the number of clusters of s sites, normalized per lattice site, is 

ns oc s ~ (1) 

Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel. 

679 

0022-4715/92/010t)-0679506.50/0 �9 1992 Plenum Publishing Corporation 



680 Rapaport 

For two-dimensional lattices the result ~ = 187/91 is believed to be exact. 
The scaling expression (1) is actually the leading-order term in a large-s 
expansion for ns, but the neglect of higher-order corrections should not be 
significant at sufficiently large s. On the other hand, there are limitations 
as to how large s can become on a finite lattice, because, as soon as the 
typical cluster is capable of spanning the lattice, finite-size effects will begin 
to affect the results. Thus there is a range of s over which (1) might be 
expected to provide a good fit to the data; the extent of this range must be 
determined by numerical means, with previous results (3) already suggesting 
a broad range of applicability. Extending the linear size of the lattice from 
the earlier L = 1.6 x 105 to L = 6.4 x 105 should allow an even more precise 
test of the scaling theory. 

It is inefficient (3) to generate the cluster distribution of a lattice this 
size in a single calculation, especially in view of the potentially large 
memory requirements of the direct approach and the nature of the com- 
putations involved. A far more effective approach is to subdivide the lattice 
into a large number of sublattices which are generated independently and 
then joined. This approach has been described at length elsewhere (s) in a 
review of methods for lattice-statistical problems; the principal algorithms 
employed in this calculation will be found there. One particular advantage 
of the method is that the properties of all the sublattices are obtained at no 
extra cost. 

A very brief summary of the approach is as follows. The computation 
involves independently generating 1024 sublattices, each with L = 2 x 104. 
For each sublattice, the sites are randomly populated with probability 
P = Pc ,  and the complete clusters thus formed--those that do not extend to 
any of the sublattice edges--are enumerated; in addition, a list of those 
incomplete clusters that do actually touch the sublattice edges is compiled. 
The technique used for cluster accounting is based on the well-known mul- 
tiple labeling method. (6) Sets of four distinct sublattices are then joined, 
resulting in 256 sublattices with edge L = 4 x 104; clusters that are linked 
across mutual sublattice boundaries are suitably merged. This process is 
repeated several more times until only a single full-size L = 6.4 x 105 lattice 
remains. At each stage of the procedure the cluster distributions of the 
combined sublattices are computed after periodic boundary conditions 
have been taken into consideration, and of course the final full-size lattice 
is treated in similar fashion. Thus, the quality of the results based on 
smaller L benefits from a comparatively large sample size, whereas the 
largest lattice is realized only once. The computations required 
approximately 200 hr on an IBM 6000/320 workstation. 

In order to reduce both the amount of data that must be recorded and 
the inherent statistical scatter, the cluster results are stored in histogram 
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form with a bin width which doubles at each successive interval. The 
results of the computa t ion  are the partial sums 

2 k 1 

Gs= ~ n,,, s = 2  k (2) 
s , =  2 k - I  

The expected behavior  of G, can be derived from the scaling form (1) by 
integration; to leading order the result is 

Gs = const  x Slav - T  (3) 

where 

Sav= [2 e ' (2  k -  1)31/2 (4) 

is the geometric mean of  the limits of the k th  his togram bin. 
The results for G, are shown in Fig. 1 plotted on a log-log scale. In 

addit ion to the mean Gs evaluated over all the lattice realizations for each 
size L, the high and low extremes are also shown (except for the largest L); 
clearly there exists a b road  range of  cluster sizes for each L over which the 
spread in Gs is extremely narrow. 

Linear least-square fits based on the logari thm of the functional form 
of the scaling prediction (3) are shown in Fig. 2 for each of the lattice sizes 
considered. The contr ibut ions arising from extreme values of s, where 
deviations from linearity were apparent  in Fig. 1, have been eliminated, 
both  for small s, where scaling breaks down, and for large s, where poor  
cluster statistics and finite lattice size dominate;  the remaining points are 
seen to lie extremely close to the optimal linear fit. For  the largest lattice, 
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Fig. 1. Double logarithmic plot of the cluster size distribution. The lattice edge ranges from 
L = 2 • 10 4 to L = 6.4 x 10 s, with L doubling between lattices. The per-site normalization has 
been removed to separate the curves which would otherwise overlap (the higher curves are for 
larger L). In addition to the means over all lattice realizations, minimum and maximum 
cluster counts are also shown. 
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Fig. 2. 
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Linear least-square fits to the data of Fig. 1 after removal of data points at the small- 
and large-s limits. The data points themselves are also shown. 

the linear behavior (on a log-log scale) extends from approximately 
L =  100 to L =  10 7, a range of cluster sizes covering five orders of 
magnitude. 

The gradients of the lines in Fig. 2 are estimates of 1 - z; the values of 
deduced from the fits for the four largest lattice sizes lie between 2.0510 

and 2.0516. If the contributions of the four smallest s values are removed 
from the fit calculations, the z estimates are then found to lie between 
2.0534 and 2.0558, with the value for the largest lattice being 2.0541. The 
second set of values differs from the expected exact result, ~ = 187/91 = 
2.0549 .... by less than 1 part per 1000, which is excellent by Monte Carlo 
standards. The succinct conclusion is that the evidence in favor of scaling 
remains strong. 
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